STAT 2593 Lecture 024 - Methods of Point Estimation

Dylan Spicker

Methods of Point Estimation

Learning Objectives

1. Understand the method of moments estimation procedure.

Once we have an estimator, it is easy to generate estimates.

- Once we have an estimator, it is easy to generate estimates.
- Sometimes there are obvious candidates for generating estimators, other times, not.

- Once we have an estimator, it is easy to generate estimates.
- Sometimes there are obvious candidates for generating estimators, other times, not.
- Estimation techniques are designed to generate estimators for parameters of interest, generally.

- Once we have an estimator, it is easy to generate estimates.
- Sometimes there are obvious candidates for generating estimators, other times, not.
- Estimation techniques are designed to generate estimators for parameters of interest, generally.
 - Maximum likelihood estimation is the most prominent estimation technique.

- Once we have an estimator, it is easy to generate estimates.
- Sometimes there are obvious candidates for generating estimators, other times, not.
- Estimation techniques are designed to generate estimators for parameters of interest, generally.
 - Maximum likelihood estimation is the most prominent estimation technique.
 - Method of moments is an intuitive technique, which typically generates robust estimators.

We have seen the expected value of random variables often, as E[X].

- We have seen the expected value of random variables often, as E[X].
 - ► This is also called the **first moment**.

- We have seen the expected value of random variables often, as E[X].
 - ► This is also called the **first moment**.
 - If we consider $E[X^2]$, we can call this the **second moment**.

- We have seen the expected value of random variables often, as E[X].
 - ► This is also called the **first moment**.
 - If we consider $E[X^2]$, we can call this the **second moment**.
 - ln general, taking $E[X^k]$ is called the k-th moment.

- We have seen the expected value of random variables often, as E[X].
 - This is also called the first moment.
 - If we consider $E[X^2]$, we can call this the **second moment**.
 - ▶ In general, taking $E[X^k]$ is called the *k*-th moment.
- Population moments will be functions of the unknown parameters, denoted θ.

► If we have an independent and identically distributed sample, X₁,..., X_n, then we can consider **sample moments**.

► If we have an independent and identically distributed sample, X₁,..., X_n, then we can consider **sample moments**.

• The first sample moment is the sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

- ► If we have an independent and identically distributed sample, X₁,..., X_n, then we can consider **sample moments**.
 - The first sample moment is the sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

In general, the k-th sample moment will be

$$\widehat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

- If we have an independent and identically distributed sample, X₁,..., X_n, then we can consider **sample moments**.
 - The first sample moment is the sample mean, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

In general, the k-th sample moment will be

$$\widehat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

• With the estimator \widehat{m}_k , we can use a sample to compute estimates (i.e., values) for these.

If we have L total parameters to estimate, Θ = (θ₁,...,θ_L), then...

- If we have L total parameters to estimate, Θ = (θ₁,...,θ_L), then...
 - 1. We compute the first *L* population moments which will be functions of Θ .

- If we have L total parameters to estimate, Θ = (θ₁,...,θ_L), then...
 - 1. We compute the first *L* population moments which will be functions of Θ .
 - 2. We compute the first L sample moments, which will be computable values of the sample.

- If we have L total parameters to estimate, Θ = (θ₁,...,θ_L), then...
 - 1. We compute the first *L* population moments which will be functions of Θ .
 - 2. We compute the first L sample moments, which will be computable values of the sample.
 - 3. We set $\widehat{m}_k = E[X^k]$, for k = 1, ..., L, and then solve for the components of Θ .

- If we have L total parameters to estimate, Θ = (θ₁,...,θ_L), then...
 - 1. We compute the first *L* population moments which will be functions of Θ .
 - 2. We compute the first L sample moments, which will be computable values of the sample.
 - 3. We set $\widehat{m}_k = E[X^k]$, for k = 1, ..., L, and then solve for the components of Θ .
 - 4. The solution to the system of equations gives $\widehat{\Theta} = (\widehat{\theta}_1, \dots, \widehat{\theta}_L)$.

The method of moments estimators are robust, intuitive, and comparatively easy to compute.

- The method of moments estimators are robust, intuitive, and comparatively easy to compute.
- The method of moments estimators assume that all of the population moments exist, this will not always be the case.

- The method of moments estimators are robust, intuitive, and comparatively easy to compute.
- The method of moments estimators assume that all of the population moments exist, this will not always be the case.
- ► The method of moments estimators will generally be **biased**.

- The method of moments estimators are robust, intuitive, and comparatively easy to compute.
- The method of moments estimators assume that all of the population moments exist, this will not always be the case.
- ► The method of moments estimators will generally be **biased**.
- Method of moment estimators do not need to be valid parameter values.

- Estimation techniques are general processes which generate estimators.
- The method of moments estimators are derived by setting population moments equal to sample moments, and solving for the unknown parameters.
- Method of moments estimators are robust and intuitive, but generally biased, and may not exist (or be valid).